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• How do we model rapid phase transitions?
• How do we drive safely and efficiently?

Autonomous vehicles often fail in high-risk 
situations where a potential accident is likely

Our goal is to design safe and efficient
policies for autonomous vehicles in near-
accident scenarios
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• Key insight: Phase transitions can be modeled as 
optimal switches, learned by reinforcement 
learning, between different modes of driving styles, 
each learned through imitation learning

• We propose H-ReIL, which is composed of a high-
level policy learned with reinforcement learning 
that switches between different modes and low-
level policies learned with imitation learning

• H-ReIL leverages the benefits of both RL and IL 
methods

• Users rate H-ReIL significantly higher than 
baseline methods

• Collision rate represents safety and 
completion time represents efficiency

• H-ReIL achieves a better balance between 
safety and efficiency compared to baseline 
methods


